百姓大小事,一呼百应!

百姓网 | 百姓知道

互联网

如何看待微软新开源的LightGBM?

地址:GitHub - Microsoft/LightGBM: LightGBM is a fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.与Xgboost相比如何 Experiments · Microsoft/LightGBM Wiki · GitHub看他们自己实验的结果,真是惊人

2 个回答

  • 柯国霖 | 2017-07-26 11:22:32

    下午跑了一个分类实验,30万样本,40维特征,lightGBM在22秒内跑完,速度惊人,比xgboost快不少,精度与xgboost不相上下。但是易用性和特性相比xgboost还有待提高,cv,early stopping这两个我觉得非常重要的特性并没有找到。当然,相信这些特性很快就会有了。

    对于数据挖掘(竞赛)爱好者来说,又多了一项好工具。

    Excited!

    本问答由柯国霖提供

  • 柯国霖 | 2017-07-26 11:21:39

    12/17/2016 更新:

    • 完成了python-package,欢迎使用。
    • 直接支持类别特征(Categorical Feature),不需要进行0/1展开。相对0/1展开的解决方案,速度快非常多,且精度一致。
    大多数机器学习工具都无法直接支持类别特征作为输入,一般需要转换成多维0/1特征,带来计算和内存上的额外消耗。LightGBM增加了针对于类别特征的决策规则,这在决策树上也很好实现。主要的思想是,在对类别特征计算分割增益的时候,不是按照数值特征那样由一个阈值进行切分,而是直接把其中一个类别当成一类,其他的类别当成另一类。这实际上与0/1展开的效果是一样的。

    ---------------------------------------


    正好开源了一个月,强答一下。


    GBDT 虽然是个强力的模型,但却有着一个致命的缺陷,不能用类似 mini batch 的方式来训练,需要对数据进行无数次的遍历。如果想要速度,就需要把数据都预加载在内存中,但这样数据就会受限于内存的大小;如果想要训练更多的数据,就要使用外存版本的决策树算法。虽然外存算法也有较多优化,SSD 也在普及,但在频繁的 IO 下,速度还是比较慢的。


    为了能让 GBDT 高效地用上更多的数据,我们把思路转向了分布式 GBDT, 然后就有了 LightGBM。设计的思路主要是两点,1. 单个机器在不牺牲速度的情况下,尽可能多地用上更多的数据;2. 多机并行的时候,通信的代价尽可能地低,并且在计算上可以做到线性加速。


    基于这两个需求,LightGBM 选择了基于 histogram 的决策树算法。相比于另一个主流的算法 pre-sorted(如 xgboost 中的 exact 算法),histogram 在内存消耗和计算代价上都有不少优势。


    • Pre-sorted 算法需要的内存约是训练数据的两倍(2 * #data * #features * 4Bytes),它需要用32位浮点来保存 feature value,并且对每一列特征,都需要一个额外的排好序的索引,这也需要32位的存储空间。对于 histogram 算法,则只需要(#data * #features * 1Bytes)的内存消耗,仅为 pre-sorted算法的1/8。因为 histogram 算法仅需要存储 feature bin value (离散化后的数值),不需要原始的 feature value,也不用排序,而 bin value 用 uint8_t (256 bins) 的类型一般也就足够了。
    • 在计算上的优势则主要体现在“数据分割”。决策树算法有两个主要操作组成,一个是“寻找分割点”,另一个是“数据分割”。从算法时间复杂度来看,Histogram 算法和 pre-sorted 算法在“寻找分割点”的代价是一样的,都是O(#feature*#data)。而在“数据分割”时,pre-sorted 算法需要O(#feature*#data),而 histogram 算法是O(#data)。因为 pre-sorted 算法的每一列特征的顺序都不一样,分割的时候需要对每个特征单独进行一次分割。Histogram算法不需要排序,所有特征共享同一个索引表,分割的时候仅需对这个索引表操作一次就可以。(更新:这一点不完全正确,pre-sorted 与 level-wise 结合的时候,其实可以共用一个索引表(row_idx_to_tree_node_idx)。然后在寻找分割点的时候,同时操作同一层的节点,省去分割的步骤。但这样做的问题是会有非常多随机访问,有很大的chche miss,速度依然很慢。)。
    • 另一个计算上的优势则是大幅减少了计算分割点增益的次数。对于一个特征,pre-sorted 需要对每一个不同特征值都计算一次分割增益,而 histogram 只需要计算 #bin (histogram 的横轴的数量) 次。
    • 最后,在数据并行的时候,用 histgoram 可以大幅降低通信代价。用 pre-sorted 算法的话,通信代价是非常大的(几乎是没办法用的)。所以 xgoobst 在并行的时候也使用 histogram 进行通信。

    当然, histogram 算法也有缺点,它不能找到很精确的分割点,训练误差没有 pre-sorted 好。但从实验结果来看, histogram 算法在测试集的误差和 pre-sorted 算法差异并不是很大,甚至有时候效果更好。实际上可能决策树对于分割点的精确程度并不太敏感,而且较“粗”的分割点也自带正则化的效果。


    在 histogram 算法之上, LightGBM 进行进一步的优化。首先它抛弃了大多数 GBDT 工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长 (leaf-wise) 算法。 level-wise 过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,不容易过拟合。但实际上level-wise是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。leaf-wise则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大(一般也是数据量最大)的一个叶子,然后分裂,如此循环。因此同 level-wise 相比,在分裂次数相同的情况下,leaf-wise 可以降低更多的误差,得到更好的精度。leaf-wise 的缺点是可能会长出比较深的决策树,产生过拟合。因此 LightGBM 在leaf-wise 之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。


    另一个比较巧妙的优化是 histogram 做差加速。一个容易观察的现象:叶子的直方图可以通过其父节点的直方图及其兄弟的直方图来进行。通常构造直方图,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的 k 个桶。利用这个方法,LightGBM 可以在构造一个叶子的直方图后,可以用非常微小的代价得到它兄弟叶子的直方图,在速度上可以提升一倍。


    如需要更多的细节,可以参考github上的文档:https://github.com/Microsoft/LightGBM/wiki/Features

    本问答由柯国霖提供

* 本站部分内容来源自网络,仅作分享之用,侵删。